TARGET MATHEMATICS
Jhe Excellence Key...Dr. AGYAT GUPTA
(M.Sc, B.Ed., M.Phill, P.hd)

CODE:TMC-AG-PB-1

REG.NO:-TMC -D/79/89/36/63

General Instructions :-

- (i) All Question are compulsory :
- (ii) This question paper contains **36** questions.
- (iii) Question 1-20 in **PART-** A are Objective type question carrying 1 mark each.
- (iv) Question 21-26 in **PART -B** are sort-answer type question carrying 2 mark each.
- (v) Question 27-32 in **PART** -C are long-answer-I type question carrying 4 mark each.
- (vi) Question **33-36** in **PART -D** are long-answer-II type question carrying **6** mark each
- (vii) You have to attempt only one if the alternatives in all such questions.
- (viii) Use of calculator is not permitted.
- (ix) Please check that this question paper contains 8 printed pages.
- (x) Code number given on the right-hand side of the question paper should be written on

the title page of the answer-book by the candidate.

CLASS – XII	MATHEMATICS
Time : 3 Hours	Maximum Marks : 80

PRE-BOARD EXAMINATION 2019 -20

PART - A (Question 1 to 20 carry 1 mark each.)

SECTION I: Single correct answer type

This section contains 12 multiple choice question. Each question has four

choices (A) , (B) , (C) &(D) out of which ONLY ONE is correct .

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com					
Q.1	If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 7 & 1 \\ 1 & -5 & 7 \\ 7 & 1 & -5 \end{pmatrix}$ then <i>AB</i> is equal to				
	(a) I_3 (b) $2I_3$ (c) $4I_3$ (d) $18I_3$				
Q.2	Inverse of the matrix $\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$ is				
	$ (a) \begin{bmatrix} 1 & 2 & 3 \\ 3 & 3 & 7 \\ -2 & -4 & -5 \end{bmatrix} (b) \begin{bmatrix} 1 & -3 & 5 \\ 7 & 4 & 6 \\ 4 & 2 & 7 \end{bmatrix} (c) \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix} (d) \begin{bmatrix} 1 & 2 & -4 \\ 8 & -4 & -5 \\ 3 & 5 & 2 \end{bmatrix} $				
Q.3	If the points whose position, vectors are $3\mathbf{i} - 2\mathbf{j} - \mathbf{k}$, $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$,				
	$-\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $4\mathbf{i} + 5\mathbf{j} + \lambda\mathbf{k}$ lie on a plane, then $\lambda =$				
	(a) $-\frac{146}{17}$ (b) $\frac{146}{17}$ (c) $-\frac{17}{146}$ (d) $\frac{17}{146}$				
Q.4	If A and B are two events such that $P(A) = \frac{3}{8}$, $P(B) = \frac{5}{8}$ and				
	$P(A \cup B) = \frac{3}{4}$, then $P\left(\frac{A}{B}\right) =$				
	(a) $\frac{2}{5}$ (b) $\frac{2}{3}$ (c) $\frac{3}{5}$ (d) None of these				
Q.5	The co-ordinates of the foot of the perpendicular drawn from the origin to a plane is $(2, 4, -3)$. The equation of the plane is (a) $2x-4y-3z=29$ (b) $2x-4y+3z=29$				
	(c) $2x + 4y - 3z = 29$ (d)None of these				

Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 4010685(O), 7000636110(O) Mobile : 9425109601(P)

Q.6	Visit us at www.agyatgupta.com		
-	If $\cos^{-1} p + \cos^{-1} q + \cos^{-1} r = \pi$ then $p^2 + q^2 + r^2 + 2pqr =$		
	(a) 3 (b) 1 (c) 2 (d) -1		
Q.7	The chances to fail in Physics are 20% and the chances to fail in Mathematics are 10%. What are the chances to fail in at least one subject		
0.0	(a) 28% (b) 38% (c) 72% (d) 82%		
Q.8	$\int \frac{e^{2x} - 1}{e^{2x} + 1} dx =$		
	(a) $\frac{e^{2x}-1}{e^{2x}+1}+c$ (b) $\log(e^{2x}+1)-x+c$		
	(c) $\log(e^{2x}+1)+c$ (d)None of these		
Q.9	A plane meets the co-ordinate axes in $_{A,B,C}$ and (α, β, γ) is the centered of the triangle $_{ABC}$. Then the equation of the plane is		
(a) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$ (b) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$			
	(c) $\frac{3x}{\alpha} + \frac{3y}{\beta} + \frac{3z}{\gamma} = 1$ (d) $\alpha x + \beta y + \gamma z = 1$		
Q.10	The minimum value of objective function $c = 2x + 2y$ in the given		
	Y		
	feasible region, is $2x+3y=134$ $x+5y=200$ x		
	(a) 134 (b) 40 (c) 38 (d) 80		
	Fill in the blanks (Q11 – Q15)		
	Target Mathematics by- Dr.Agyat Gupta		

visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	Visit us at www.agyatgupta.com				
Q.11	If $f: R_+ \to [4,\infty) \&: f(x) = x^2 + 4$ then $f^{-1}(x) = \dots$				
Q.12					
	the indicate point; $f(x) = \begin{cases} \frac{1 - \cos 2kx}{x^2}, & \text{if } x \neq 0\\ 8, & \text{if } x = 0 \end{cases}$ at $x = 0$				
Q.13	If $\begin{bmatrix} 1 & 1 & x \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0$, then $x = \dots$.				
Q.14	Which of the following is not a decreasing function on the interval $\left(0, \frac{\pi}{2}\right)$				
	(a) $\cos x$ (b) $\cos 2x$ (c) $\cos 3x$ (d) $\cot x$ OR				
	The function $f(x) = 2x^3 - 15x^2 + 36x + 4$ is maximum at				
	(a) $x = 2$ (b) $x = 4$ (c) $x = 0$ (d) $x = 3$				
Q.15					
	$2\hat{i} - \hat{j} + 2\hat{k}$, $\hat{i} + 3\hat{j} + 5\hat{k}$ respectively. Find the vector representing CA.				
	OR				
	If $ \vec{a} \times \vec{b} = 4$, $ \vec{a} \cdot \vec{b} = 2$, then $ \vec{a} 2 \vec{b} 2 =$.				
	(Q16 - Q20) Answer the following questions				
Q.16	Find the real values of λ for which the following system of linear				
	equations has non-trivial solutions. $2\lambda x - 2y + 3z = 0$;				
	$x + \lambda y + 2z = 0; 2x + \lambda z = 0$				

Target Mathematics by- Dr.Agyat Gupta 4 visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	Visit us at www.agyatgupta.com		
Q.17	Evaluate: $\int_{0}^{2} x \sqrt{(2-x)} dx$.		
Q.18	Evaluate: $\int \frac{x^3}{\sqrt{x^2 + 2}} dx =$		
	(a) $\frac{1}{3}(x^2+2)^{3/2}+2(x^2+2)^{1/2}+c(b)\frac{1}{3}(x^2+2)^{3/2}-2(x^2+2)^{1/2}+c$		
	(c) $\frac{1}{3}(x^2+2)^{3/2} + (x^2+2)^{1/2} + c$ (d) $\frac{1}{3}(x^2+2)^{3/2} - (x^2+2)^{1/2} + c$		
Q.19	Evaluate: $\int \frac{dx}{x \log x \log(\log x)}$		
	OR		
	Evaluate: $\int \tan^4 x dx$		
Q.20	The differential equation obtained by eliminating the arbitrary constant C in the equation representing the family of curves $xy = C \cos x$ is		
	PART – B (Question 21 to 26 carry 2 mark each.)		
Q.21	Prove that : $2 \tan^{-1} \frac{1}{5} + \sec^{-1} \frac{5\sqrt{2}}{7} + 2 \tan^{-1} \frac{1}{8} = \frac{\pi}{4}$.		
	OR		
	Relation R in the set A = {1, 2, 3, 4, 5,6,7} given by R = {(a, b): $ a-b $ is even} Then find the number of set of all elements to related to 3.		
Q.22	If $y = \sin\left(2\tan^{-1}\sqrt{\frac{1-x}{1+x}}\right)$, find $\frac{dy}{dx}$.		
Q.23	The volume of metal of hollow sphere is constant. If the inner radius at		
	the rate of 1 cm/s, find the rate of the outer radius, when the radii are 3		

visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com

	cm and 6 cm respectively.			
Q.24	If $\hat{i} + \hat{j} + \hat{k}$, $\hat{2i} + \hat{5j}$, $\hat{3i} + \hat{2j} - \hat{3k}$ and $\hat{i} - \hat{6j} - \hat{k}$ are the position vectors of			
	the pints A,B,C and D respectively, find the angle between \overrightarrow{AB} and \overrightarrow{CD} .			
	Deduce that \overrightarrow{AB} and \overrightarrow{CD} are parallel.			
	Find the values of 'a' for which the vector $\vec{r} = (a^2 - 4)i + 2j - (a^2 - 9)k$ makes acute angles with the coordinate axes.			
Q.25	Show that the line $\overrightarrow{r} = (\overrightarrow{i} + \overrightarrow{j}) + \lambda(2\overrightarrow{i} + \overrightarrow{j} + 4\overrightarrow{k})$ is parallel to the plane			
	$\vec{r} \cdot (-2\hat{i} + \hat{k}) = 5$. Also find the distance between the line and the plane.			
Q.26				
PART – C (Question 27 to 32 carry 4 mark each.)				
Q.27	If $f: R - \left\{\frac{7}{5}\right\} \to R - \left\{\frac{3}{5}\right\}$ be defined as $f(x) = \frac{3x+4}{5x-7} \& g: R - \left\{\frac{3}{5}\right\} \to R - \left\{\frac{7}{5}\right\}$			
	be defined as $g(x) = \frac{7x+4}{5x-3}$. Prove that $gof = I_A & (fog) = I_B$ where			
	$B = R - \left\{\frac{3}{5}\right\} \& A = R - \left\{\frac{7}{5}\right\}.$ Find also $g^{-1}, f^{-1} \& (gof)^{-1}.$			
Q.28	If $y = \sin(\sin x)$, prove that $\frac{d^2 y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$.			
	OR UX			
	Find the derivative of the $\cos^{-1}\left(\sin\sqrt{\frac{1+x}{2}}\right) + x^x f(x)$ w.r.t. x at x = 1.			

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com

			v 1910 up ut
Q.29	Find the particular solution of the differential equation		x - y + 2 = 0 the c
	$\frac{dy}{dx} + y \tan x = 3x^2 + x^3 \tan x, x \neq \frac{\pi}{2}, \text{ given that } y = 0 \text{ when } x = \frac{\pi}{3}.$	Q.34	a b-y c-
Q.30	Evaluate: $\int_{0}^{1} x (\tan^{-1} x)^{2} dx$.		If a b-y c- a-x b c- a-x b-y c
	OR Evaluate: $\int \cos 2\theta \log \left(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right) d\theta$.		find the value of $\frac{a}{x} + \frac{b}{y}$
Q.31	There are 4 card numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement Let X denotes the sum of the numbers on the two drawn cards. Find the mean and variance of X.		State the condition under a unique solutions. her Cramer's rule : 9x + 7y
	OR Bag I contains 4 red and 5 black balls and bag II contains 3 red and 4 black balls. One ball is transferred from bag I to bag II and then two balls are drawn at random (without replacement) from bag II. The balls so drawn are both found to be black. Find the probability that the transferred ball is black.	Q.35	A large window is in triangle . The total per
Q.32	A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit, of Rs 17.50 per package on nuts and Rs. 7.00 per package on bolts. How many packages of each should e produced each day so as to maximize his profit, if he operates his machines for at the most 12 hours a day?	Q.36	of the window to admit to Find the distance of 3x + y - z + 2 = 0 me Also find the foot of the given line.
	PART – D (Question 33 to 36 carry 6 mark each.)		****
Q.33	Using integration, find the area of the region bounded by the line		जिन्हें अपना भविष्य बेहतर
1		L	- I

Visit us at www.agyatgupta.com curve $x = \sqrt{y}$ and y-axis. – z - Z , then using properties of determinants, С $\frac{b}{v} + \frac{c}{z}$, where x, y, z $\neq 0$ OR der which the following system of equations have ence solve the following system of equations by y + 3z = 6; 5x - y + 4z = 1; 6x + 8y + 2z = 4. angents to the curve $y = \cos(x + y)$, $-2\pi \langle x \langle 2\pi \rangle$ line x + 2y = 0. OR he form of a rectangle surmounted by a Equilateral imeter of the window is 12 m, find the dimensions t maximum light through the whole opening. of the point (3, -2, 1) from the plane neasured parallel to the line $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-1}{1}$. the perpendicular from the given point upon the ********//******** ार करना है. वे आज मेहनत करते हैं. कल के भरोसे नहीं बैठते।

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89 7 xmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P) Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxini bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)